Mikloš, D., Potočňák, I., Dunaj-Jurčo, M. \& Jäger, L. (1997). Acta Cryst. C. Accepted for publication.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Pavelčík, F. (1993). XP21. A Computer Program for Syntex P2 Data Reduction. Comenius University, Bratislava, Slovakia.
Potočňák, I., Dunaj-Jurčo, M., Mikloš, D. \& Jäger, L. (1996). Acta Cryst. C52, 1653-1655.
Potočňák, I., Dunaj-Jurčo, M., Mikloš, D., Kabešová, M. \& Jäger, L. (1995). Acta Cryst. C51, 600-602.

Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1997). C53, 1218-1220

4:1 Lewis Base Adducts of Palladium
 Dichloride: $\left[\mathbf{P d}(3 \text {-picoline })_{4}\right] \mathrm{Cl}_{2} \cdot \mathbf{2} \mathbf{H}_{2} \mathrm{O}$

Wei Chen, ${ }^{a}$ Cai-ming Liu, ${ }^{b}$ Ren-gen Xiong ${ }^{b}$ and Xiao-zeng You ${ }^{b}$
${ }^{a}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ${ }^{b}$ Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Centre for Advanced Studies in Science and Technology of Microstructure, Nanjing 210093, People's Republic of China. E-mail: chenwei@kimia.um.edu.my

(Received 10 October 1996; accepted 10 February 1997)

Abstract

The palladium ion of the title $4: 1$ Lewis base adduct, tetrakis(3-methylpyridine-N) palladium(II) dichloride dihydrate, $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{4}\right] \mathrm{Cl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, is coordinated to four 3-methylpyridine ligands in a planar configuration with an average $\mathrm{Pd}-\mathrm{N}$ distance of 2.024 (2) \AA. Two chloride ions are in trans positions at a distance of 3.671 (2) \AA from the palladium ion. The water molecules are each disordered over two sites with half occupancy.

Comment

Studies of palladium complexes in organic synthesis and catalytic processes, as well as studies of their chemical reactivity, spectroscopy and structural aspects have received great attention (Newkome et al., 1985). Palladium(II) complexes possessing simple N -atom donors are well documented in the literature (Hartley, 1981) and a number of structural studies have been reported on these complexes. However, to the best of our knowledge, few examples of $4: 1$ Lewis base adducts of
palladium such as $\left(4-\mathrm{ClC}_{5} \mathrm{H}_{4} \mathrm{~N}\right)_{4} \mathrm{Pd}\left(\mathrm{C}_{5} \mathrm{HF}_{6} \mathrm{O}_{2}\right)_{2}$ have been characterized by single-crystal X-ray diffraction (Siedle \& Pignolet, 1982). These palladium complexes were found to possess special uses in ortho-metallation (Siedle, 1981a), β-diketonate transfer reactions (Siedle, 1981b) and acid-base surface complexes formed by utilizing metal oxides as condensed-phase donor (Siedle, Sperl \& Rusch, 1980; Siedle \& Newmark, 1981). In this paper, we report the crystal structure of another 4:1 Lewis base adduct of palladium, namely, the 3-methylpyridine adduct [(3-picoline) $)_{4} \mathrm{Pd}^{2} \mathrm{Cl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$, (I).

(I)

The geometry and the numbering scheme of the title compound is presented in Fig. 1. The Pd atom is coordinated to four picoline ligands in a squareplanar arrangement and lies on a centre of symmetry. Weak contacts to two chloride ions, at distances of 3.671 (2) \AA from the Pd atom, define the axial positions of a grossly tetragonally distorted octahedron. The angles subtended by the two chlorides to N1 and N 2 are 91.7 (1) and $88.3(1)$, and $91.2(1)$ and $88.8(1)^{\circ}$, respectively. Similar distortion is also ob-

Fig. 1. ORTEP (Sheldrick, 1990b) plot drawn at the 30% probability level. H atoms are drawn as spheres of arbitrary radii.
served in $\left(4-\mathrm{ClC}_{5} \mathrm{H}_{4} \mathrm{~N}\right)_{4} \mathrm{Pd}\left(\mathrm{C}_{5} \mathrm{HF}_{6} \mathrm{O}_{2}\right)_{2}$ (Siedle \& Pignolet, 1982). The $\mathrm{Pd}-\mathrm{N}$ distances (average 2.025 A) are in close agreement with other PdN_{4}-type complexes; $2.027 \AA$ in $\left(4-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{~N}\right)_{4} \mathrm{Pd}\left(\mathrm{C}_{5} \mathrm{HF}_{6} \mathrm{O}_{2}\right)_{2}$ (Siedle \& Pignolet, 1982), $2.038 \AA$ in $\left[(\text { bpy })_{2} \mathrm{Pd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{2}$ (Siedle \& Newmark, 1981), 2.036 A in $\left[\operatorname{Pd}(\text { bpy })_{2}\right](\text { pic })_{2}$ (Maeda, Nishida, Okawa \& Kida, 1986) and $2.025 \AA$ in $\operatorname{Pd}(\text { trien })^{2+}$ (Hori, Matsumoto, Ooi \& Kuroya, 1977).
As shown in Fig. 2, the Pd atom is located at the origin of the triclinic unit cell. Each Cl^{-}ion is hydro-gen-bonded to four water molecules forming a zigzag chain parallel to the a axis between the planar cations. The $\mathrm{O}($ water $) \cdots \mathrm{Cl}$ distances are 3.113 (8)-3.238 (8) \AA. These parameters are comparable to those in other palladium(II) complexes viz. $\left[\mathrm{Pd}\left(\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{4}\right)_{2}\right] \mathrm{Cl}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, $\left[\mathrm{Pd}\left(\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{4}\right)\right] \mathrm{Cl}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\left[\mathrm{Pd}\left(\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{4}\right)\right] \mathrm{Cl}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (the separations are $3.1-3.3 \AA$ between water and Cl , and 2.7-2.9 \AA between water and water; Newkome, Frere, Fronczek \& Gupta, 1985). Note, however, that the water sites are only half occupied (OW1 and its symmetry-related counterpart are too close to allow full occupancy).

The interplanar angle between the two asymmetric pyridyl rings is $86.96(8)^{\circ}$.

Fig. 2. Unit-cell packing diagram projected down the c axis.

Experimental

The title complex was prepared by heating PdCl_{2} and 3-methylpyridine in the presence of dimercaptomethylene-propanedinitrilato- S, S^{\prime}-dipotassium under reflux in ethanol for 2 h . The resulting solution was evaporated at room temperature for several days. Pale-yellow block-shaped crystals were obtained. The IR spectrum indicated the presence of crystal water (strong bands at 3462 and $3410 \mathrm{~cm}^{-1}$).

Crystal data
$\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{4}\right] \mathrm{Cl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=585.84$
Triclinic
$P \overline{1}$
$a=9.070$ (1) \AA
$b=9.734(1) \AA$
$c=9.779$ (2) \AA
$\alpha=117.86(1)^{\circ}$
$\beta=112.16(1)^{\circ}$
$\gamma=92.36(1)^{\circ}$
$V=681.5(2) \AA^{3}$
$Z=1$
$D_{x}=1.427 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Data collection
Enraf-Nonius CAD-4
diffractometer
$\omega-2 \theta$ scans
Absorption correction:
ψ scan (North, Phillips
\& Mathews, 1968)
$T_{\text {min }}=0.498, T_{\text {max }}=0.697$
2561 measured reflections
2395 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.083$
$S=1.109$
2395 reflections
174 parameters
H atoms riding
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=12-15^{\circ}$
$\mu=0.903 \mathrm{~mm}^{-1}$
$T=300(2) \mathrm{K}$
Irregular
$0.5 \times 0.5 \times 0.4 \mathrm{~mm}$
Pale yellow
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.943 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.634 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)

$$
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0639 P)^{2}\right.
$$

$+0.1347 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
Table 1. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Pd}-\mathrm{N} 1$	$2.021(2)$	$\mathrm{Pd}-\mathrm{N} 2$	$2.026(2)$
$\mathrm{N} 1 — \mathrm{Pd}-\mathrm{N} 2$	$90.7 \mathrm{I}(8)$	$\mathrm{N} \mathrm{l}^{\mathrm{i}}-\mathrm{Pd}-\mathrm{N} 2$	$89.29(8)$

Symmetry code: (i) $-x,-y,-z$.
Site occupancies of 0.5 were assumed for the water molecules (for OW1, the symmetry equivalent sites must be mutually exclusive). H atoms on CH_{3} and $\mathrm{H}_{2} \mathrm{O}$ were located from difference Fourier maps. The former were refined isotropically, while the latter were held fixed.

Data collection: CAD-4 VAX/PC Operator's Manual (EnrafNonius, 1988). Cell refinement: CAD-4 VAXIPC Operator's Manual. Data reduction: NRCVAX (Gabe, Le Page, Charland, Lee \& White, 1989). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990a). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL/PC (Sheldrick, 1990b). Software used to prepare material for publication: SHELXL93.

This work was supported by grants from the State Science and Technology Commission and the National

Nature Science Foundation of China, and the National Science Council of Malaysia (IRPA grant No. 09-02-030004).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1170). Services for accessing these data are described at the back of the journal.

References

Enraf-Nonius (1988). CAD-4 VAXIPC Operator's Manual. EnrafNonius, Delft, The Netherlands.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.

Hartley, F. R. (1981). Coord. Chem. Rev. 35, 143-209.
Hori, F., Matsumoto, K., Ooi, S. \& Kuroya, H. (1977). Bull. Chem. Soc. Jpn, 50, 138-141.
Maeda, S., Nishida, Y., Okawa, H. \& Kida, S. (1986). Bull. Chem. Soc. Jpn, 59, 2013-2014.
Newkome, G. R., Frere, Y. A., Fronczek, F. R. \& Gupta, V. K. (1985). Inorg. Chem. 24, 1001-1006.
Newkome, G. R., Puckett, W. E., Kiefer, G. E., Gupta, V. K., Fronczek, F. R., Pantaleo, D. C., McClure, G. L., Simpson, J. B. \& Deutsch, W. A. (1985). Inorg. Chem. 24, 811-826.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M.: (1990a). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1990b). SHELXTUPC. Structure Determination Software Programs. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siedle, A. R. (1981a). J. Organomet. Chem. 208, 115-123.
Siedle, A. R. (1981b). Inorg. Chem. 20, 1318-1320.
Siedle, A. R. \& Newmark, R. A. (1981). J. Am. Chem. Soc. 103, 1240-1241.
Siedle, A. R. \& Pignolet, L. H. (1982). Inorg. Chem. 21, 135-141.
Siedle, A. R., Sperl, P. M. \& Rusch, T. W. (1980). Appl. Surf. Sci. 6, 149-160.

Acta Cryst. (1997). C53, 1220-1221

A Linear Cluster with Mixed Ligands, [$\mathbf{W C u}_{2} \mathbf{S}_{4}(\mathbf{t p t})_{2}\left(\mathbf{P P h}_{3}\right)_{2}$]

Quanming Wang, Xintao Wu, Qun Huang and Tianlu Sheng

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China. E-mail: wxt@ms.fjirsm.ac.cn
(Received 6 February I996; accepted 26 November 1996)

Abstract

The structure determination of tetra- μ-sulfido- $1: 2 \kappa^{4} S$;$1: 3 \kappa^{4} S$-bis(tetrahydropyrimidine-2-thione)- $2 \kappa S, 3 \kappa S$-bis(triphenylphosphine) $-2 \kappa P, 3 \kappa P$-dicoppertungsten, $\left[\mathrm{Cu}_{2} \mathrm{~W}\right.$ -

$\mathrm{S}_{4}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}$], is reported. The compound contains a linear cluster core [$\mathrm{CuS}_{2} \mathrm{WS}_{2} \mathrm{Cu}$]. Each Cu atom has a distorted tetrahedral coordination, from two S atoms of a tetradentate WS_{4}^{2-} moiety, one S atom of tetrahydropyrimidine-2-thione (tpt) and one P atom of PPh_{3}.

Comment

Several linear clusters $M \mathrm{~S}_{4} M_{2}^{\prime}\left(\mathrm{PPh}_{3}\right)_{3} .0 .8 \mathrm{CH}_{2} \mathrm{Cl}_{2}(M=$ $\mathrm{Mo}, \mathrm{W} ; M^{\prime}=\mathrm{Cu}, \mathrm{Ag}$) have been prepared over the last two decades (Müller, Bőgge \& Schimanski, 1983). Additionally, the linear heterometallic trinuclear clusters $\left[\mathrm{Et}_{4} \mathrm{~N}\right]\left[\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{AgS}_{2} \mathrm{MS}_{2} \mathrm{Cu}(\mathrm{CN})\right](M=\mathrm{Mo}, \mathrm{W})$ have been synthesized in recent years (Du, Zhu, Chen, Wu $\& \mathrm{Lu}, 1992 a, b$). The title compound, (I), also has a linear core $\left[\mathrm{CuS}_{2} \mathrm{~W}_{2} \mathrm{Cu}\right]$, but in which both Cu atoms are tetrahedrally coordinated by mixed ligands.

(I)

As shown in Fig. 1, the W atom has tetrahedral coordination, WS_{4}^{2-}. Furthermore, each Cu atom is coordinated by a distorted tetrahedron of two S atoms of the tetradentate WS_{4}^{2-} moiety, one S atom of tpt and one P atom of PPh_{3}. The average $\mathrm{W}-\mathrm{Cu}, \mathrm{W}-\mu-\mathrm{S}$ and $\mathrm{Cu}-$ μ-S distances of 2.7525 (8), 2.201 (2) and 2.321 (2) \AA, respectively, are comparable with the corresponding values of $2.740(3), 2.214$ (8) and 2.284 (8) \AA found in $\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{WS}_{4} \mathrm{Cu}_{2} \cdot 0.8 \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The $\mathrm{Cu}-\mathrm{S}_{\mathrm{tpt}}$ bond length of $2.363(3) \AA$ is longer than that of $2.206(2) \AA$ in $\left[\mathrm{Cu}(\mathrm{tpt})_{2} \mathrm{Cl}\right]$ (Bret, Castan \& Jugie, 1983).

Acta Crystallographica Section C
ISSN 0108-2701 © 1997

Fig. 1. The molecular structure of (I) showing 50% probability
displacement ellipsoids. H atoms have been omitted for clarity.

